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Multigrid Applied to Singular Perturbation Problems

David Kamowitz*

Abstract

The solution of the singular perturbation problem
—eu” +b(z)u' = f, 0<z<1

with
1>e>0, u(0)=1uy, u(l)=1u

by a multigrid algorithm is considered. Theoretical and experimental results for a number of
different discretizations are presented. The theoretical and observed rates agree with the results
developed in an earlier work of Kamowitz and Parter.

In addition, the rate of convergence of the algorithm when the coarse grid operator is the
natural finite difference analogue of the fine grid operator is presented. This is in contrast to

the case in the previous work where the Galerkin choice (I L, 1%) was used for the coarse grid
operators.
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| 1 Introduction _

| R
This report discusses the application of a multigrid algorithm to the solution of the following one :\'\f'
dimensional singular perturbation problem: F*% A
i
—eu" +b(z)u = f, 0<z<1 (1) i,

ALY

with }.;}'\.
13650,  u(0)=uo, u(l)=u. :33‘5‘
Many other authors have discussed the application of various methods of solution to the alge- -"':-",
braic problem; in particular see Dorr [Dorr70a}, Babuska [Babu69a], Ervin and Layton [Ervi85al, ::
and Kellogg and Tsan [Kell78a]. ;:E: |
Much of the literature regarding muitigrid methods restricts itself to the solution of nice prob- [N
lem:s. Indeed most authors require that the linear system be well conditioned in addition to symmet- :\-’.,.
ric and positive definite. However, in the case of singular perturbation problems as the coefficient of :_:':’.
the second order term tends to zero the usual symmetric discretization fails to be of positive type. ;'_
Thus the first measure taken in the numerical discretization of these problems is to replace the usual :;j.';:, '

symmetric difference of the first order term with some form of skewed differencing. In particular o
for problems with turning points this may lead to a system of equations which is ill-conditioned .::::_'f_
for small . ;i;-_,:
From the standpoint of calculating a numerical approximation to the solution of problem (1) "_-::'l“'
the first question is: does the discretization converge to the continuous solution? Then, assuming ,__:;_
it does, how does the multigrid algorithm perform as a solver for this system of linear equations? ;.:::
What modifications, if any, are necessary in the mulitigrid algorithm? :::',:;
The main result shows that if the original system of equations resulting from the discretization ::'::-: ]
of problem (1) is of positive type then the theoretical results for the multigrid algorithm developed ——
in Kamowitz and Parter [Kamo85a] and in McCormick and Ruge [McCo82a] apply. Eﬁ \
From a computational perspective it is convenient to use for the coarse grid operators of the %b\ :
multigrid algorithm the operators that are the finite difference analogue of the original operator. '-.\‘;: ‘
In Section 6 the rate of convergence of the algorithm using the finite difference version of the coarse ;-‘,»__.
grid operators is considered. It is shown that the new rate of convergence is an O(h?) perturbation f:‘_:s
of the rate obtained using the Galerkin choice. E'.:EN
R
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2 The Discrete Problem

Sty
=,
2

+

Vi
Three model problems are chosen for study, one where the sign of 5(z) does not change and two ;:::
where b(z) changes sign. The three problems are designated y“:;:\
Problem BL ety
ll:.ll."‘l
Lu= —eu" +u' =0, 0O<z<1 (2) BRGASy
."..\*"-
LS
Problem TP-1 ‘:/'":'. '
! e
LuE—eu"+(x—§)u':O, 0O<z<1 (3) L./
s
Problem TP-2
— " 1 ! ;’:.'::
Lu=-euv' - (z--)u'=0 O<z<l (4) gt
:
For all three problems the boundary conditions are v .

u(0) =1, u(l) = 3.
For the discrete problem as usual let N > 0 be chosen and set h = 1/(N + 1). The interval
0=(0,1)
is discretized to form
Qp={th:1<i<N}.

The notation z; refers to the point th and u; refers to u(z;). In addition the usual notation for

finite differences is used:

Dy, = '_‘."_L‘}T__’fi, D_u; =

Uy — Uy

h

uipp — 2u + Ui
he

Uil — Ui
2h

Dou; = , DyD_u; =

For problem (BL) the following two discretizations are considered:

Liui = —eDyD_uj + D_u (upwind differencing)

—€

1+ ;,‘/2€D+D~“-' + D_u (sce Kellogg and Tsan).

Liu,- =

,
A S O R R R L A U TER D, Y 3




Since problems (TP-1) and (TP-£) have turning points at x = } it is necessary to change the
direction of the discretization of the first order term. For problem ( TP-1) the discretization tested

1s

Lui= ~eDyDoui+ (s~ PDypui,  1<i< T2 (5)

L}u; = —eDyD_u; + (z; - %)D._ui, i;_—l +1<t+<N. (6)
Similarly, for problem ( TP-2) the discretization is

Lyui=—eDyD_u;— (z; - })D-u;, 1<i< N;— ! (7)

Lyw; = —eD,D_u; — (z; — }) Dy, N+1 +1<i<N. (8)

Note that each of the discretizations L¥, k = 1,...,4 results in a tridiagonal linear system of

equations whose coefficient matrix may be denoted by

L= -a B -]

a; >0, % >0, and f;>a;+ .

Thus each L:, k=1,...,41is an M-matrix and the linear system of equations

Liu;=fi, 1<i<N,

ug and uy 4 fixed has a solution; see for example Berman and Plemmons [Berm79a).

3 Review of the Multigrid Algorithm

The particular multigrid algorithm used to solve (1) has been discussed in detail in Kamowitz and

Parter [Kamo85al; thus only a cursory review is given here. In particular the details of the theory

behind the convergence results can be found there. What is important to realize is that although

the algorithm and convergence results discussed in the previous work apply to well conditioned two

point boundary value problems the same bounds on the rate of convergence apply to the singular

perturbation problems discussed here.

[N

In order to completely deseribe the algorithm a number of spaces and operators need to be

‘s

defined  For the various spaces chaose g nested grids

.l
L 4
Ly

(Zh \”‘.’h L 7”,,},

P R s
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where
p = 29-\1, A

Denote by Sy, the space of grid functions defined on ;4. From now on the notation kh will be Y

replaced by k. Denote by G the smoother, I,f“ the restriction map, and I,fH the interpolation -

map. Associated with each space Sj there is also a nonsingular tridiagonal operator
Ly : Sg— Sk,
where L is of positive type. The operators L are again denoted
Ly=| -of BF -F ]

These operators will be formally defined after the statement of the algorithm.

The following is an outline of the algorithm used. Assuming U] is the nth approximation to

the solution of the system of equations .
LUy = Ry Ry
KRS
algorithm MG(U, Lk, Fi, k) returns U,:'“, the next iteration of the multigrid algorithm. The grid e
P
layer is denoted by k; set k = 1 to start the algorithm on the finest grid layer. f'\:
 J
Algorithm MG(UZ, Ly, F, k)
1. Coarse Solve: If k = g (coarsest grid) then return Sy
MG L, 'F, NS
otherwise O
2. Smooth: Apply the smoother, G, call the result of this step U[. PRGN

If £ =1 use U]' as the initial guess, otherwise use 0.
3. Recursively Apply the Algorithm: Set

Ut e UP + I MG(O, Ly, IE N (Fe - LUP) K+ 1),
4. (optional) Smooth Again: Set U™ « G, U™ R
5 Return: Set MG « U™t N

As defined algorithm MG is called a symmetric V-cycle if step 4 1s used; otherwise algorithm

T

MG is referred to as a slash cycle (following the notation of McCormick and Ruge).

For the smoother, GG, choose m-applications of damped Jacobi iteration with parameter a.

-
A

.

lOrma“y, r(‘p(éat f()r 1 < r<m
(,’7‘0] (/Y ¢ ~—‘—] [ y 1 I" l(/r
JJ * 3 1 ] . (1]"7) ( - i )]

The interpolation operator, If | is defined as follows. For points common to (L and to (1,

sct
1k I g7
ealiy, U,
4
b TP S T TP i T T e A U I T e T A A e W _'. _'- Tt ." [SE .".-.\ L. ce - . _.-. T 'n..'_-" “_--'.-.' ’
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and at odd (new) points of (1 require

{Le[l Uy, = O.

This results in the explicit system of equations at the point z2;_;

1
ko k E+1 k E+1
Uzj-1= 25— [azj-lUj—l +72:‘—1Uj+1} :
B3ia

‘L k+1

The restriction operator, I;" ", is
k k
kriprky _ 1] @5 g k V25 ok
(708 = 5 [—kLUzrl + Uz + *k—JUml} :
ﬁ2j—1 ﬂ2j+l

Note that if Ly Is symmetric then

k Lok T
L= §(Ik+1)

A fundamental observation due to McCormick and Ruge [McCo82a] in the symmetric case is that

Sy can be written

Sk = Range If,, ® Nullspace I,’c‘“Lk. (9)

For non-symmetric problems the above decomposition follows directly from the characterization of
Range I,’C‘Jrl and Nullspace I,f“l;k; see Kamowitz and Parter.

Finally the coarse grid operators, Li+1, are chosen by setting
7 — 7k
Ligt = Liepr = P Ll

A direct computation shows that

k
Lk+1:[ _a;ﬁ-l ﬂj+l _,7;:+1 ]
with
k ok
okl = 1[“21“21—1} (10)
- k
’ 21 Fria
k Ak k k
gerr l{ﬁk _ %2Ta5-1 “’2:‘“2:41} (11)
T 25 % k
’ 2 ! ﬁZj—l ﬂ2j+—1
k ok
g [l -
ARSI . ,
’ 2 [32]#1

Note that the choice of Li,; is the ‘natural’ choice; however it is not the only feasible choice for

L4y

(@41
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3.1 Convergence Theory

For completeness some results from [Kamo85a] are repeated.
Let

€ = Uppye — U™
be the error in the nth iterate. Here Uy, corresponds to the true solution of the algebraic problem
LpUgrue = f.
The rate of improvement of the nth iterate of algorithm MG is then

n_ _ll€nl

e

To estimate p, the asymptotic rate as n — oo, one needs to bound the p".

For later use define

Iz}, = (Laz,2) = D (Laz),z;.

J

First the two grid process is considered. Given an initial error
60 = Utrue — an
the two grid process yields:

1. Smoothing

O 0= 'O
where G' corresponds to the lincar part of the smoother G. Note that from (9)

O =+ wn

where

n € Nullspace IZ"L;, and wgy € Sgp.
2. Restricting the residual r, = Lie® to Qg yiclds
Rop = IPPLyeY = I3 Lym + P Lpllwon = [ER Ly wan

since

n € Nullspace I** L.

s
5 &
e

-
R

A <
b

A

P e

B
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P
[N".4

N

L3
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3. Computing the coarse grid correction directly (as is the case for the two grid algorithm) is

equivalent to solving
Lonthan = Ran = Lanwan.
Here
Lon = Lon = "Ly 13,
so

Y25 = Wah.
4. Finally, correcting & using the coarse grid correction yields €!:

et = Utrue — Ut
= Utrue - (00 + I2hh¢2h)
= @~ IZ¥m
_ h R
= n+ Igwn — Ipton

= 1”.

Note that if

Le Saon

then one step of the two grid procedure solves the problem! In general, since ||G']| < 1 the rate p!

satisfies
I
= il < o
In this case
=1
S0
ol = lInl] .
ll€°l

Notice that the n term is related to the action of the smoother while the IéthUgh term is eliminated
by the multigrid process itself.

In Kamowitz and Parter [Kamo85a] an explicit decomposition of S, was found in terms of the
eigenvalues and eigenvectors of the damped Jacobi scheme. This decomposition was exploited to

compute bounds on the rate of convergence.

For the two grid scheme, the bounds on p, for a given m and a, are given in Table 1. Note that

s. iy
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m a

333 [ .500 | .667 | .750 [ 1.00 | 1.333
500 | .333 | 400 | .429 | .500 | .572
250 | 111 | .160 | .184 | .250 | .326
125 ] 078 | .088 | .093 | 125 | .187
.068 | .062 | .068 | .072 | .083 | .109

Q| B[

Table 1: Predicted Rates for 2 Grids

m a

333 | .500 | .667 | .750 [ 1.00 | 1.333
633 | .577 | .561 | .561 | 577 | 614
435 | 408 | 417 | 424 | 447 [ 475
336 | .335 | .349 | .357 | .378 | .403
283 | .293 | .307 | .314 | 333 | .357

S| B e

Table 2: Predicted Asymptotic Rate

the optimal rate is obtained for a = .5. In the succeeding sections the bound in the a = .5 case will
be obtained experimnentally for problems (BL), (TP-1), and ( TP-2).
In the case where the number of grids is arbitrary, estimates based on the ideas in [McCo82a)

are given in Table 2. As indicated in [Kamo85a| these bounds are not sharp.

4 The Singular Perturbation Case

For the study of singular perturbation problems it is necessary that if Ly is an M-ma‘rix then the
coarse grid operators Ly, k ~ 1,2,... are also M-matrices. This is necessary to insure that each

subproblem

Liy1¥er1 = fes

is solvable. In particular since the smoother Gy, depends on Ly, then if Ly is an M--matrix,

Gyl < L.

Lemma 4.1 [f

Lk '-“ - a;‘- ﬂ; . '7; I
ts an M-Matriz then
Lot - | W(Yfﬂ 5;«1 7,7;”1 ]
ts also an M-matrir, where (rf”, /3;”1 and 7;‘” are gtven by equations (10 12).

b
b3S
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Proof: The hypotheses that L is an M-matrix insures that

af >0, gF>0, andqf>0

S0 af“ and 7;“ are also positive. In addition, ﬂf“ must satisfy

k1l k+1 k+1
; > al; ;
ﬁ] = @ +’YJ ’

Recalling the expressions for o/;-, ﬂf and ’7? note that this is equivalent to requiring

k ok k _k k k k ok
e 25 M25-1 2%2541 N Qo 1 | T2;72541
25 k - k - k k
ﬂ‘lj—l ﬂsz 52]‘—1 ﬁ21'+1
or,
k k
Oy - Yo ;
koo 2y k k 2j k k
By 2 [ [0‘2]‘4 + ’721-1] + gE_ 10 T Y2541
251 2541

which follows directly from the fact that L, is diagonally dominant.
Since cach of the Lgy; is an M-matrix, the theory developed in Section 3.1 can be applied in

the singular perturbation case.

5 Experimental Results

The algorithm of the previous sections was applied to problems (BL), (TP-1) and (TP-2). Prob-
lem (BL) exhibits a boundary layer at z == 1. From a computaticnal point of view the system of
linear equations that is solved is well conditioned even for small €; however the fact that the linear
system is not symmetric leads to computational difliculties in computing the experimental rate of
convergence.

In the case of problem (TP-1) there are two boundary layers; at z = 0 and at £ = 1. In addition
the systermn of equations that is solved 151l conditioned.

The discrete problem corresponding to problem (T-2) is well conditioned. The fact that there
is an interior turning point at r 12 does not appear to lead to computational difficulties.

By using the one sided difference schemes discussed in the previons section the linear systems
arising from the discretization of the problems are of positive type.

From a practical standpoint, however, what effect does the ill conditioning have on the observed

solution? In particular, how should the rate of convergence (reduction in the error) be measured?
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5.1 General Remarks Regarding the Experiments

N
In all the experiments N, the number of points on the fine grid, was 63. The initial guess, U", was -‘.:-'".:
.‘\.:_‘
constructed so that the initial error could be chosen in advance. In other words, RN
RIS
RSN
0 _ , A -
Uj' = u(zy) - €.

For the experiments discussed here
e = (1),

The number of smoothing steps for the experiments discussed here was set to one. Experi-
ments were run where the number of smoothing steps was greater than one. When more than one
smoothing step was used there was no observed qualitative difference in the behavior of the algo-
rithm compared to the behavior for non-singular perturbation problems. Unless otherwise noted
the results are for the two grid case. The computer used was a VAX-11/780 and the tests were run
in double precision (roughly 16 decimal digits of accuracy).

The damped Jacobi parameter, a, was chosen to be .5. The following heuristic argument due

to Brandt [Bran77a suggests why a = .5 is optimal for one smoothing step. His suggestion is

to choose a so that the range of eigenvalues which are reduced by the damped Jacobi process is

cqual to the range which is left alone by the process. As noted in [Kamo85a] the eigenvalues of the .
damped Jacobi scheme come in pairs A(u) and :\(;L) where .r_:::
DN

Ap) = pta and :\( 1) = L ':-:‘;

WY a SR Wing

®

and g are the cigenvalues of the scheme for a = 0. The eigenvalues p are real and distinct and as
h -» 0 they fill out the interval [0,1]. Brandt’s requirement corresponds to choosing a so that

(1) = A0)

or in other words to taking a - 1/2. Note that this is equivalent to requiring

A1) - A(0).

Indeed in [Kamog&5al for 1 smoothing step the theoretical and experimental results indicate that

this choice of a 15 optimal.

=

5.2 Results for the Boundary Layer Problem

For problem (L) the solution to the analytic problem can be caleulated explicitly. Forall € > 0

the solntion u. (1) 1x

WA VNI TN A
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Grid 1 [ 1 [ ot [ 005 ] .003

[~001

| o

(o) IS4 BTN VU )

1 1 1 1

1 62 x1073 [ .11 x1072 | .54 x107%2 | 73 x10°% [ .86 x10~ ¢
.25 x107% | 45 x107% | .18 x10~! | .21 x107! | .28 x107!
.98 x1072 | .12 x107! | .37 x107! | .44 x10°! | .46 x107!
.39 107! | .41 x107! | .80 x10™! | .92 x107! | .96 x107!
.15 15 .19 .20 .21

1

.011
027
.048
.099
.21

.012
.024
.048

21

Table 3: Condition Number — Problem BL
The constants C; and C; satisfy

2 ele -3

Cl:el/T_l-’ Cy=1-C =

Note that
lim C; = 0, IimCy; =1
e—0 e—0

SO

l%ue(z) = 1.

Denote by U, .(z) the numerical solution of problem (BL) for a fixed h and €. The consistency L

condition on the solution then requires that for fixed e
'lti_r.r}J Up,e(z) = u.(z).
Dorr [Dorr70a] proved that for fixed h

lim Up .(z) = 1.
e—0

The discretization of problem (BL) using L} (standard upwind differencing) results in an ap-

el/le = 1°
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proximation to the true solution which is an O(h) approximation. To improve on this approximation \\‘..-:
. . . . -.':\‘:w.

Kellogg and Tsan point out that the use of L? results in an O(h?) approximation for ¢ > 0. For ~ay
A YA

the reduced problem (e = 0) L% gives an O(h) approximation. :}::.:

LI
It is important to note that the linear system of equations arising from the discretization of ®
Problem (BL) is not ill-conditioned. Table 3 displays the LINPACK [Dong79a] estimate RCOND -::. Y
. . - .\‘\-
(an estimate of the inverse of the condition number) for L}, h = 1/64 and ¢ = 1, .01, .005, .003, AN
.'_-s_ N

and .001. '_.:,.:
First, some gencral conclusions about the experimental results. For both L) and L the al- .. 2
gorithm converged to the solution of the algebraic problem with an asymptotic convergence rate ;-:: N
_?‘._\‘_;-s.
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identical to the rate predicted in Section 3.1. Moreover there was no observed qualitative difference

in the behavior of the algorithm with respect to the choice of L} or LZ. However, as € — 0 the

behavior of the iterates changes dramatically.

Define
o el
lIrn-1ll
where
rn=F - L,U"

is the residual after the nth iteration and the norm used is the {; norm. From a computational
point of view this is a convenient measure of the rate of improvement since one does not know the
true solution. From past computational experience this ratio is bounded above by the theoretical
error reduction rate. Indeed for large €, say € = 1, this is the case. For small €, say € = .001, after
a small number of iterations R, exceeded the rate predicted in Table 1, and then as n increased R,
declined towards the predicted rate; see the solid line in Figure 1. The dashed line will be referred

to later. In both cases two grids are used.

An explanation for this behavior is that as the algorithm proceeds the fact that the error is
being measured in an asymmetric norm causes problems. The user of the algorithm should be
careful to note that while in principle all norms on finite dimensional spaces are equivalent the use
of a symmetric norm results in much better observed behavior of this particular algorithm.

To demonstrate this hypothesis the problem
LyU=F
1s transformed into the equivalent symmetric problem

D 'LyD(D7'U) =D 'F

I
x>
—_—
—
W
~—

The matrix D is a positive diagonal matrix whose entries are given by

dy -1, d, — di 1.

Ti1
Applying this transformation to Ly results in L; which is now symmetric. The matrix Lj is
denoted

l’;l : vy, l/‘/(ll kA ’}I‘llb l“/‘ls '

Denote by algorithm MG* algorithm MG applied to problem (13). The error resulting from

applying algorithm MG s related to the error from applying algorithm MG as follows:
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Lemma 5.1 If¢” is the error after the nth iteration of applying algorithm MG then the new error,

€™t is related to the error in the symmetric problem by

(MG*)(D7'e) = D"'MGe = D 'eHE,

Proof: By the definition of €™,
"=U-U"
and

el =U - U™t = MGe™.

Also,
D7l =D~y - DTlum
Applying each step of algorithm MG*® to D7U" results in D™1U"*! as a straightforward calcula-

tion shows. Hence

MG* D7'Uun = DT'MG U™
Applying this transformation to the error ¢® and computing the rates

poip _ 1Dl
"D,

results in the more usual behavior displayed by the dashed line in Figure 1. Figure 2 displays the
location where the maximum norm of the error is taken on versus the iteration number. Notice
how as the iteration proceeds the location where the maximum occurs ‘drifts.” Applying D~! and

then measuring R, has the effect of ‘fixing’ the location where the maximum error is taken on.

Unfortunately the entries of the transformation matrix D satisfy
D, — o0

as € — 0 so this is not a stable method for solving this problem in general.
In summary, for problem (2) where the coeflicient matrix was not poorly conditioned but was
non-symmetric the only computational difficulty was in choosing the norm in which to measure

the rate of improvement of the algorithm.

5.3 Turning point Problem — 1

In this section consider the solution of

l
1 !
cue + (x - lz)ue 0, (14)
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£
Grid 1 1 [ 01 005 ] 003 1 001

1 00023 T.00032 T.20 x10° 8 [ .19 x10° 7 [ 13 x10 2 [ .71 x10 1]

2 0023 | 0013 | .76 x10°% | .66 x1079 | 41 x1071% | 23 <10 1%

3 0096 | 0085 | .83 x10°2 | 85 x10°% | 8O x107% | 60 x10 2

4 .038 037 [ .46 x1071 | 55 x107Y | .60 x107! | 65 x10° !

5 15 146 16 17 .18 19

6 1 1 1 1 i !

Table 4: Condition Number - Problem TP-1
with
115(()) S w. (1) - 3.

This problem has two boundary layers, at x - 0 and at ¥ — 1. The asymptotic solution satisfies

(see 'KreiTda and ‘Dorr70al)

limug(x) -- 2.
£ - l)

For the discrete problem again

v r (15)

is solved where L} is given by equations (5) and (6). The condition number of L7 tends to infinity as
€ -+ 0 for a fixed h. Table 4 displays the LINPACK estimate RCOND for L}, h /64 and € — 1,
06,005, 003, and 001 [t 1s important to note that although the operator corresponding to the
onginal discretization on the A grid is ill conditioned, Ly, & 3,4, are notill conditioned. In
fact 1n the miting case where the coarse grid has one point the system of equations to be solved is
a 1 x | systera which has condition number 1. This feature of the multigrid algorithm s reassuring
to the user since it means that the actual system being solved directly in step 1 of algorithm MG
18 well conditioned and no special measures need to be taken.

Although the coarse grids used in the algorithm do not resolve the boundary layers the algorithm
still converges. This 1s because the role of the coarse grids is to solve for the error in the solution,
rather than to represent the solution itself. The boundary layers are not seen in the expression for
the error. The observed rate of convergence was independent of the value of £ used.

For all tested values of € the multigrid algorithm converged to the solution computed by Gans-
stan Klhimination to the algebraic problem. However, thell conditioning of the algebraie system
resulting from the discretization of the continmons problem opens up the question of to what so-
lution does the multigrid algorithm converge? Sinee the original system s ill conditioned there s

a family of solutions {7 for which the residual s small. Iudeed for «+ 001 the condition number

RThS

5

/]
.

o
<’ ?.. \)
<

.'--‘
Feh )
NS

>,

-
-

5

) ESANN
N

N
Ll

PY Y s e .

R

L
\'.":'\‘l‘-
e,
L

.
2

v .




s

D
wm e

-?:::_
il
e~
i
Sy
AW
e
3
N
-~ - £ l“~ 2]
G ! T 01 .005 003 001 | 0 e
: ; . R t;- I ‘[ P ,_,2 T jri ,,2—I l '*ﬂ
RN ITEN T a% 10 45 x10 69 x10 89 x10 013 0 ] Ny
2ol 2o 10 20 w10 2] 7 x1070 | 24 x1071 | 28 %1071 | 031 O Nt
o010 ] w107 |25 x107 | .33 x1071 | .37 x107! | 038 | .035 LN
T 039 040 063 .080 .089 095 | .096 P
|0 15 15 18 20 21 20 ] 02 NN
e I 1 1 1 1 [ 1 1 o,
e AP
Table 5 Condition Number -~ Problem 7'7-2 ;;-'.’-
..e
estimate 15 .71 - 10 “! which is less than the unit roundoff of the VAX-11,/780. Thus there is no ":':'-
I. -.-"
reason to expect that the solution calculated by solving equation (15) is an adequate approximation ~$.‘-'_.‘-
» _"._ ]
to the solution of the continuous problem. In the experimental runs that was indeed the case and e

both algorithm M and Gaussian Elimination returned 0 for the solution.
Since for this problem the error is not skewed as in problem (31), it is not surprising to see
that the ratio of mprovements #,, are bounded above by the predicted rate from Table 1. This

can be seen in Figure 3, for £ 001,

5.4 Turning point Problein 2

In this section the solution to

(16)

. |

u.(r) 1 0O r- =
, 1

() 3. ST 1

Although one sided differencing. in this case L}, s used to compute the solution, the system of
equations that 1s solved s not il conditioned. As in Section 5.3 the LINPACK estimate RCOND

of the condition number was computed; sce Tabie 5.

)
[

[t appears that the condition number is related to the boundary data. For problem { 17-1) the g
NASAS

. . . . . . . . . P ]
diseretization nses information from the boundary layer to estimiate u.(r) at interior points. The e

\ . ) _ ) v {,_;:_,:

boundary data for problem (77-2) is well represented (no boundary Layers) i the interior. A

A

. . . . AN - . .
From the standpoint of the multignid algonithim agan as the grids get coarser the condition ®
. . . SRS

number improves.  Also, as for problem (TF-1) the rate of convergence of the algorithm was P
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independent of the value of &, and was identical to the rate predicted in Section 3.1. In addition

£

s

R, was bounded above by the predicted rate.
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6 Comparison of I?*L,I}, and Ly,

hJ
‘l

L)

From a computational point of view one would like to choose for the coarse grid operator Lgp the

tridiagonal operator analogous to L, obtained by finite differences. This choice for Lgy will be

denoted L{,‘f For now only the symmetric problem

= (pu)' =/, plz) 2po>0 (17)

f l'. l~
NN

with boundary conditions

= “x
'i‘ﬁ',‘l' l'.'l

u(0) =u(l) =0

[4

is considered. Here p(z) is a stmooth function.

N s vy
RV s

Lemma 6.1 The operator [_{: is related to Lop by

.

.

-Cy |
where A;, C; depend on p(z), p'(z) and p"(z), and B; = A, + C;.

Proof: Recall that the coefficients of Lsyp are given in equations (10-12). In particular

g = -

1 [QQka'zk—l]
5 .

Hak-1

Expanding

(.Y k

(M) R)p((452)h)

LA 4
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PP N
) \n"\-{;’\v."h

[

p(2) + §9/(2) + 5" (2) + CiA%|[p(2) - $0'(2) + F0"(2) - Cob°)
[p(2) + 50'(2) + 5 0"(2) + C1h?] + [p(2) - 5P/(2) + 5 p"(2) - C2h?)
p(2)* + h*[3p"(2)p(z) - 3(P'(2))*] + DA

2p(z) + & p"(z) + Eh3

|
] -

1
= 4—[)(53) + thk
= Ot{d 4+ h? Ag
where Ay depends on p(z), p'(z) and p"(z).
A similar calculation yields
=%+ h2Cr.

In addition

Br = &+ A
= of*+ h?A, + 4]+ RiC,

= {d+h2Bk.

The error analysis in Section 3.1 shows that if Lz is not used then the coarse grid correction

t2n, will not equal wq,. Thus a bound on the eigenvalues of the eigenvalue problem
ALjy = Lany
1s needed.

Lemma 6.2 The eigenvalues A of
ML = Lany
satisfy

max |C;|

IA—-1] < h? < oo,

~

Ts

min

Proof: By Lemma 6.1
Lon = LI2+ 02 -4, B -G,
thus
(A D)L, ¥) = k(| ~A0 Bi ~Ci [9,9).
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Summation by parts yields

hz([ -A; Bi —C; |y, ¥)
(L, )
B > Ci(vi — '~/’i+1)2
Sl — vi1)?

B2 max |Cy]

. d
min I'y,f |
Kh?

o o]

because of the smoothness of p and since ['7{‘{[ > pg > 0. In addition, since ng is positive definite,

-
@

(A= 1){Lfw,¢) > 0

2

. ., 'n. %

which implies
A-1>-Kh?
Therefore
(A - 1] < Kh%.
Recall from equation (9)
@ =0+ hwan

and if i,g;, 1s used then

(S R NS NS

In the case where Lg: i1s used to solve

4 .
L{h Yon = Lanwzn

the error is denoted ¢!. Now

e =0+ Iy (wan - Yan).

Since Range 1;‘,, and Nullspace I}* Ly are L—orthogonal (see [Kamo85a] ),

IS = i, + 1 (wan — )],

RIS AN Ol

A

A T

L




Applying Lemmas 6.1 and 6.2,

| 3% (wan — d)zh)fli,,

1

= §<L2h(w2h ~ tan), (wan — Y2n))
1 —1-

= 3 (Lan(wzn — (L3])
1 "

= §(FL;{,2wzm FL;QZWM)

where

-1
( 1/2(Lfd) L;{EZ)

The eigenvalues of Ll/z(LN) tpie

1/2

<1.‘ 1/2 2h Wah,

IA

. 1
wan, FLytwan) < (KR)(L

1

il

Therefore

2
||12h(w2h - '¢’2h)”1, (Khz) H]ghw?h”L;.
and
I 2 2
€4l < linliz, + (KA [zhwanlly, .

Since Gl <1,

ey, < linlly, + KRHE,,
” T
Finally, the rate using L3, 1s
fti HE‘“[.}.
P = Ton
lle ]11,,
i
<< Ihl' KRR
”(OHL,,
Recall the rate using Lo is
o it l;{l,
B ‘(OHI".
22
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(Luds (wan — 21, Ign(wan — ¥2n))

-1
Lanwan), (won — (ng)

Lanwsn))

—~1 .
o5 are the same as the eigenvalues of (Lg:) Lyp, soby Lemma 6.2

L;{;2w2h>
2 -~
§(Kh2) (Lanwan, wan)

2
(KR (Lylfywon, [35wan)-




SO

o4 < p+ KhE

Remark: Although the discussion in the previous section is restricted to symmetric problems, the

same result extends to the general two point boundary value problem
~(pu') +bu'+ cu=f, p(z) > po > 0,¢(z) > 0

since problem (18) can be rewritten

(18)

(19)

s
. where
: p o g(:lf),
; c(z)
4 ¢ = glz)
v p(z)
. - f{z)
: foe ez 7=
r(z)
) The function g(r) is
: b(z) — P'(z)
. o(e) - eapl - [ Tz,
: p(z)
1 Note that p, c and f are defined since
-'- p() > po = O.
N
s :
. 6.1 An Illustration
As an illustration of the effect of replacing L2n with L{: consider using for the smoother G in
- algorithm MG one sweep of odd Gauss-Seirdel smoothing. In other words
: Gy, U, fors  Omod?2
N and forv 1 mod 2
h* g l ' ’ r :
. (717, 7{—\(1,1/. 1t WUt fo
. A,
.‘ -~ - . h . .
N This gnarantees that the error ¢ hies completely in Rangely, . In other words, the n term is 0 since
. fori  Omod?2
:. (Ilhl-?hll":h)l s 0
’ 23
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yet

(Lan, 13 wan)

= {n, Lplfwan).
In addition for points z;, with 1 = 1 mod 2,

0=ri= Lpe = (Lan); + (Lalghwan),

= (La),

which implies n; = O since n; .y = 1y, = O.
Thus

~ _ 1h
€ = Ljhwan

for some way. If zgh is used then one iteration of the algorithm results in completely solving the
problem.

For a numerical example problem (17) is solved with

(rz)

plz) = €
The right hand side f is chosen so that the the true solution is
Ugrue(x) = sin(mz).

M . . . d .
As expected when Loy 1s used the algorithm converges in one step. When Lgh is used then
the observed rate of convergence corresponds to the Kh? term of Section 6. Table 6 displays the
cbserved rate of convergence versus h for four different choices for the number of grids. The column

p(h) corresponds to the observed rate of convergence for each value of h. The value of §(h) is

Since the crror in the two grid cuze is O{h*) one expecets that &(h) > 4as h -+ 0 for two grids.
Indeed this is the case The reason why p(h) varies with the number of grids ased i1s that there are

‘polintion’ effects from not solving each coarse grid equation cxactly. In other words
A ‘ 2
¢ T Izlhr]zh t t ()(h ),

where the O(h*) term corresponds to the error made by not using Lan.
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2 grids 3 grids 4 grids = grids

o0 8] s SR ph) [ ]k 6 L

1/16 | 50 x 10°* 27 x 1071 85 x 1071 e

1/32 ] 12x 1072 | 417 | .62 x 1072 | 435 | .28 x 1071 [ 3.04 | .86 x 1077 Iars

» e,

1/64 | .30x 1073 [ 400 [ 15x 1072 | 413 | 65x 1072 | 431 | .29x 10°T [ 3.01 GOSN

1/127 1 .75 x 107* | 4.00 | .38 x 1073 | 395 | .16 x 1072 | 4.06 | .66 x 1072 | 4.33 ;;-_';.’-’;
Table 6: Rate using L], ey

. € using 2h ’:":
R
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